If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-2x=1
We move all terms to the left:
7x^2-2x-(1)=0
a = 7; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·7·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{2}}{2*7}=\frac{2-4\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{2}}{2*7}=\frac{2+4\sqrt{2}}{14} $
| 14j=-14 | | 12x-16=-1 | | 1/4t=3/4t+2 | | 10x+60=25x | | 26/9=78/m | | 3x²+3x+6=0 | | -7(-5x+1)=-182 | | -4x+18=-30 | | 5(4x-6)=130 | | 5(3)+10=x | | 10x=25x+60 | | 50x+12.50=400 | | y-3/2=4/5 | | 14s-5s-s-8=8 | | 5t+11t=–16 | | 0.5z=2z | | s(5)+3=0 | | 3(6x+5)+2=18x+17 | | 4^(x-2)=16^(x+2) | | 400+12.50x=50 | | -2x-7=25 | | 1.84x-3.1=12.4x-16.9 | | -4y=14 | | 10v=4+9v | | 8y+1=73 | | 4(2x+13)+3x=80 | | 50+12.50x=4002.8 | | 3/4(x-13)=-2(9+x | | 4v+v+5v-7v=15 | | 4g-7=-11 | | 4(h+2=3(h-2 | | 5m-3m-m+m=16 |